
CODE SECURITY REVIEWS

Stephen Schaub



Approaches to Security Verification
2

 Penetration testing

 Static analysis tools

 Code reviews



Why Do Code Reviews?

 Code reviews are perhaps the single most effective technique for 

identifying security flaws

 Code reviews are required for compliance to certain industry 

standards and government regulations

 Use in combination with other approaches

3



Audit vs. Collaboration
4

 Developers hate audits

 Create an atmosphere of collaboration

 Reviewer as advisor, not policeman



Preparation
5

Reviewers must be familiar with

 Application Platform

 Application Context

 Application Audience

 Application Availability Requirements



Ensuring Good Value
6

 Want to ensure reviewers find most important risks, and not focus on 

inconsequential issues

 Reviewers must understand context of application/module being 

reviewed

 Prepare a threat model with answers to key questions:

 What type/how sensitive is the data/asset in the application/module?

 Is the application/module internal or external facing? Are the users trusted?

 How important is the application to the enterprise?



Code Crawling
7

 Not necessary or efficient to review every line in application/module

 Focus on areas that may have application security implications

 Code Crawling involves using tools to identify areas of application to 

review

 Tools are usually simple text search (grep, editor find function)

 Search for uses of key API's (ex. req.query, req.body)



Attack Surface
8

 Attack surface is the set of application interfaces an attacker can use 

to perform unauthorized activity

 Inputs can come from

 HTTP

 Configuration files

 Data feeds

 Environment variables

 ...



Reviewing Techniques9



Vulnerability: Broken Access Control
10

1. Determine what assets need to be secured

2. Determine what security controls are needed to secure the assets

3. Determine whether security controls are in place and correctly 

implemented

Consider examples/express/carscsrf



Vulnerability: Security Misconfiguration
11

 Checklist:

 Are error stack traces revealed to end users?

 Are default accounts / passwords unchanged?

 Are unneeded features such as directory listings enabled?



Vulnerability: Injection
12

1. Search for use of API's that evaluate expressions or connect to external 
systems:

 Database SQL interfaces

 Command Shell interfaces

 JavaScript/Python eval()

2. Inspect lines of code that call these API's for insertion of data from program 
variables

 SQL: Does it use a safe mechanism for inserting variable data?

3. Determine where info in program variables came from

 Untrusted source?

 If so, has it been appropriately sanitized/escaped and/or validated?



Vulnerability: Cross-Site Scripting
13

 Inspect code that generates HTML responses

 For Node Express/Handlebars apps, begin with the .hbs files

 Look for variables inserted into the output

 For variables that hold data from untrusted sources, must check that 

information has been appropriately sanitized, validated, and/or encoded 

for the context where it appears

 Work backwards to find the source of each variable



Vulnerability: Cross-Site Request Forgery
14

 Checklist:

 Does the application use a CSRF protection library?

 Is it correctly configured?

 Are all routes that update the database POST, and not GET?


