
CODE SECURITY REVIEWS

Stephen Schaub



Approaches to Security Verification
2

 Penetration testing

 Static analysis tools

 Code reviews



Why Do Code Reviews?

 Code reviews are perhaps the single most effective technique for 

identifying security flaws

 Code reviews are required for compliance to certain industry 

standards and government regulations

 Use in combination with other approaches

3



Audit vs. Collaboration
4

 Developers hate audits

 Create an atmosphere of collaboration

 Reviewer as advisor, not policeman



Preparation
5

Reviewers must be familiar with

 Application Platform

 Application Context

 Application Audience

 Application Availability Requirements



Ensuring Good Value
6

 Want to ensure reviewers find most important risks, and not focus on 

inconsequential issues

 Reviewers must understand context of application/module being 

reviewed

 Prepare a threat model with answers to key questions:

 What type/how sensitive is the data/asset in the application/module?

 Is the application/module internal or external facing? Are the users trusted?

 How important is the application to the enterprise?



Code Crawling
7

 Not necessary or efficient to review every line in application/module

 Focus on areas that may have application security implications

 Code Crawling involves using tools to identify areas of application to 

review

 Tools are usually simple text search (grep, editor find function)

 Search for uses of key API's (ex. req.query, req.body)



Attack Surface
8

 Attack surface is the set of application interfaces an attacker can use 

to perform unauthorized activity

 Inputs can come from

 HTTP

 Configuration files

 Data feeds

 Environment variables

 ...



Reviewing Techniques9



Vulnerability: Broken Access Control
10

1. Determine what assets need to be secured

2. Determine what security controls are needed to secure the assets

3. Determine whether security controls are in place and correctly 

implemented

Consider examples/express/carscsrf



Vulnerability: Security Misconfiguration
11

 Checklist:

 Are error stack traces revealed to end users?

 Are default accounts / passwords unchanged?

 Are unneeded features such as directory listings enabled?



Vulnerability: Injection
12

1. Search for use of API's that evaluate expressions or connect to external 
systems:

 Database SQL interfaces

 Command Shell interfaces

 JavaScript/Python eval()

2. Inspect lines of code that call these API's for insertion of data from program 
variables

 SQL: Does it use a safe mechanism for inserting variable data?

3. Determine where info in program variables came from

 Untrusted source?

 If so, has it been appropriately sanitized/escaped and/or validated?



Vulnerability: Cross-Site Scripting
13

 Inspect code that generates HTML responses

 For Node Express/Handlebars apps, begin with the .hbs files

 Look for variables inserted into the output

 For variables that hold data from untrusted sources, must check that 

information has been appropriately sanitized, validated, and/or encoded 

for the context where it appears

 Work backwards to find the source of each variable



Vulnerability: Cross-Site Request Forgery
14

 Checklist:

 Does the application use a CSRF protection library?

 Is it correctly configured?

 Are all routes that update the database POST, and not GET?


